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Second: Addressing GPU challenges with Codee
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#2 Usage of Codee for GPU programming (1/2)

● The GPU programming challenges

● Memory usage, massive parallelism exploitation, and data transfers minimization

● Codee’s support to find opportunities for offloading and optimize memory layout for 

data transfers

● Hands-on: Optimizing MATMUL on Perlmutter

Format:

● Remote lectures (~30’), demos, and hands-on sessions
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What are the differences between CPUs and GPUs?
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Device
(GPU)

Host
(CPU)

● First, the number of cores available in the hardware
○ GPUs have many many more cores than CPUs

● Second, the grouping of the threads at the hardware level
○ In CPUs, the threads are not grouped and all the threads are executed at the same time
○ In GPUs, the threads are grouped and all the threads in a group are executed at the same 

time.

● Third, the complexity of the memory design
○ In CPUs, all the threads access to all the memory
○ In GPUs, there are constraints in the memory that can be accessed by the threads (e.g., 

cache, texture, scratchpad, global).

● Fourth, execution of instructions in vector mode
○ Both CPUs and GPUs exploit vector processing, although different “flavours” of it.



Shift Left Performance

The GPU Execution Model

Device
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(CPU)

Device 
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Host 
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● Use of a host-driven execution model.
● Sequential code runs on a conventional 

processor.
● Computationally intensive parallel pieces 

of code (kernels) run on an accelerator 
such as a GPU.

● To maximize performance, 
high-performance applications generally 
conform to the following three rules of 
accelerator programming:
○ Transfer the data onto the device and keep it 

there.
○ Give the device enough work to do.
○ Focus on data reuse within the device(s) to 

avoid memory bandwidth bottlenecks



Shift Left Performance 5

The GPU programming challenges: Example codes…

Challenges of GPU acceleration 
addressed in introductory course

Other GPU programming challenges to be addressed in 
next advanced course

Find 
opportunities 
for offloading

Optimize 
memory layout 

for data 
transfers

Identify 
defects in 

data transfers

Exploit massive 
parallelism 

through loop 
nest collapsing

Minimize data 
transfers 

across 
consecutive 
loop nests

Minimize data 
transfers 
through 

convergence 
loops

Identify 
auxiliary 

functions to be 
offloaded

Example 
codes used 
in this 
introductor
y course

PI x - - - - - -

MATMUL x x x x x - -

LULESHmk x x x x x x x

HEAT x - - - x x -

Your code! Probably all of these challenges apply, and even more!
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The GPU Programming Challenges in this Introductory Course
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Challenge #1: Find opportunities for offloading

● Code patterns: computation patterns (eg. loops will execute correctly on the GPU)
● On GPUs: Start offloading computations to the GPU, guaranteed correctness!
● On CPUs: Usually the same code analysis is required to execute the computations in parallel correctly!

Challenge #2: Optimize memory layout for data transfers

● Code patterns: memory patterns (eg. shaping arrays)
● On GPUs: Watch your data structure design as it may break your code!
● On CPUs: Hardware keeps memory consistency, so focus mostly on locality!

Challenge #3: Identify defects in data transfers

● Code patterns: computation and memory patterns (eg. deep copy)
● On GPUs: Data transfers for complex data structs are often not managed automatically!
● On CPUs: Often not a big issue as there is shared memory!
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Why using additional tools apart from APIs?

● The OpenACC Application Programming Interface. Version 2.7 (November 2018) 🔗
○ “does not describe automatic detection of parallel regions or automatic offloading of regions of code to 

an accelerator by a compiler or other tool.”
○ “if one thread updates a memory location and another reads the same location, or two threads store a 

value to the same location, the hardware may not guarantee the same result for each execution.”
○ “it is (...) possible to write a compute region that produces inconsistent numerical results.”
○ “Programmers need to be very careful that the program uses appropriate synchronization to ensure 

that an assignment or modification by a thread on any device to data in shared memory is complete and 
available before that data is used by another thread on the same or another device.”

● Programmers are responsible for making good use of Application Programming Interface (API)

○ This applies to OpenACC, OpenMP
○ But also to any other API, such as MPI, compiler pragmas, and even the programming language itself
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https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
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Shaping Arrays in OpenMP/OpenACC
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● Provide the compiler with information about array size and array ranges.

● Helps the compiler ensure correct memory allocation on the device

● Add the shape specification to the data clauses, e.g.:

x[start:count]

where start is the first element to be copied and count is the number of elements to copy. 

● Allows storing of only part of the array on the device

#pragma acc data create(x[0:N]) copyout(y[0:N])

!$acc data create(x(0:N)) copyout(y(0:N))
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1 2 3 4 5

VECTOR size 5

Shaping Arrays 1D in OpenMP/OpenACC

● Vectors are typically implemented as arrays 1D.

● Developer can choose between static and dynamic memory 
allocation.
○ Static arrays are allocated on the stack, which is limited.
○ As a result, large arrays can make the application crash.

● Actual data is stored in consecutive memory locations, which 
triggers compiler optimizations.

A

A
double *A = malloc(...)
for(i) {
  … A[i] … 
}

1 2 3 4 5

double A[9]
for(i) {
  … A[i] … 
}

1 2 3 4 5

9
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1 2 3

4 5 0

0 6 0

MATRIX 3x3

Shaping Arrays 2D in OpenMP/OpenACC

● Matrices are typically implemented as “arrays 2D”, but what is 
the actual memory layout?
○ It depends on the programming language: row-major in C/C++ and 

column-major in Fortran.

● Developer can choose between static and dynamic memory 
allocation.

● Actual data MAY NOT be stored in consecutive memory 
locations, disabling compiler optimizations.

10
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Shaping Arrays 2D in OpenMP/OpenACC

● Statically allocated arrays guarantee that actual data 
is stored in consecutive memory locations. Note that 
C/C++ and Fortran defer in the order of the data 
inside de consecutive memory region.

A

double A[3][3]
for(i) {
  for(j) { 
    … A[i][j] … 
  }
}

1 2 3 4 5 0 0 6 0
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0 6 0
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Shaping Arrays 2D in OpenMP/OpenACC

● Dynamically allocated arrays are controlled by the 
programmer, who is responsible for memory allocation 
and initialization. How can the programmer guarantee 
consecutive memory allocation?

● Dynamically allocated arrays without consecutive 
memory:

A

double **A = malloc(3)
for(i) {
  A[i] = malloc(3)
}
for(i) {
  for(j) { 
    … A[i][j] … 
  }
}

1 2 3

4 5 0

0 6 0
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1 2 3

4 5 0

0 6 0

MATRIX 3x3
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Shaping Arrays 2D in OpenMP/OpenACC

● Dynamically allocated arrays with consecutive memory: 
Several options are possible…

● Option 1:
○ Data elements are stored in one single consecutive array
○ An auxiliary pointer-type array is used to facilitate access to each row
○ This enables array accesses through the common notation A[i][j]

double **A = malloc(3)
double *Aaux = malloc(3x3)
for(i) {
  A[i] = Aaux + i * 3
}
for(i) {
  for(j) { 
    … A[i][j] … 
  }
}

A

1 2 3 4 5 0 0 6 0

In this design, the programmer needs to allocate two separate 
arrays and initialize the pointers as offset with respect to the 
beginning of the consecutive memory region.
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Shaping Arrays 2D in OpenMP/OpenACC

double *A = malloc(3x3)
for(i) {
  for(j) { 
    … A[i*3+j] … 
  }
}

A
1 2 3 4 5 0 0 6 0

And in this design, the programmer minimizes the memory 
consumption but must change all of the accesses in the code.

14

1 2 3

4 5 0

0 6 0

MATRIX 3x3

● Many scientific codes use an alternative data structure
● Option 2:

○ Data elements are stored in one single consecutive array
○ Rewrite all the 2D array accesses as 1D array accesses
○ Typically A[i][j] is rewritten as A[i*N+j]
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Shaping Arrays 2D in OpenMP/OpenACC

● Dynamically allocated arrays for sparse matrices: 
Sparse storage format uses several auxiliary arrays to 
avoid storing the elements with value equal to zero.

● For example: Compressed Row Storage (CRS) format

double *A
int *rowIdx
int *colIdx

A

rowIdx

colIdx

for(i) {
  for(j=rowIdx(i),rowIdx(i+1)-1) {
    … A[j] … 
  }
}

1 2 3 4 5 6

0 1 2 0 1 1

0 3 5 6

15

1 2 3

4 5 0

0 6 0

MATRIX 3x3
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How array shaping affects 
in OpenMP/OpenACC?
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● Array shaping in 
OpenMP/OpenACC 
affects to how to code 
data transfers.

● OpenMP/OpenACC 
clauses that tell the 
compiler what data 
must be transferred 
between CPU memory 
and GPU memory and 
how.

● MATMUL example 
code using double** 
data type.

// C (m x n) = A (m x p) * B (p x n)
void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
. . .
    // Accumulation
    #pragma acc data copyin(A[0:m][0:p], B[0:p][0:n], m, n, p) copy(C[0:m][0:n])
    {
    #pragma acc parallel
    {
    #pragma acc loop
    for (size_t i = 0; i < m; i++) {
        for (size_t j = 0; j < n; j++) {
            for (size_t k = 0; k < p; k++) {
                C[i][j] += A[i][k] * B[k][j];
            }
        }
    }
    } // end parallel
    } // end data
}
. . .

. . .

// C (m x n) = A (m x p) * B (p x n)
void matmul(size_t m, size_t n, size_t p, double **A, double **B, double **C) {
. . .

    // Accumulation
    #pragma omp target enter data map(to: A[0:m])
    for(int i0 = 0; i0 < m; ++i0) {
      #pragma omp target enter data map(to: A[i0][0:p])
    }
    #pragma omp target enter data map(to: B[0:p])
    for(int i0 = 0; i0 < p; ++i0) {
      #pragma omp target enter data map(to: B[i0][0:n])
    }
    #pragma omp target enter data map(to: C[0:m])
    for(int i0 = 0; i0 < m; ++i0) {
      #pragma omp target enter data map(to: C[i0][0:n])
    }
    #pragma omp target teams distribute parallel for shared(A, B, m, n, p) map(to: m, n, p) schedule(static)
    for (size_t i = 0; i < m; i++) {
        for (size_t j = 0; j < n; j++) {
            for (size_t k = 0; k < p; k++) {
                C[i][j] += A[i][k] * B[k][j];
            }
        }
    }
    for(int i0 = 0; i0 < m; ++i0) {
      #pragma omp target exit data map(from: C[i0][0:n])
    }
    #pragma omp target exit data map(from: C[0:m])
}
. . .



codee_com

company/codee-com/                        

www.codee.com

info@codee.com 

Subscribe: codee.com/newsletter/ 

USA - Spain 

https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
https://twitter.com/codee_com
https://www.linkedin.com/company/codee-com
http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

